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Abstract

The method of harmonic balance is used to calculate first-order approximations to the periodic solutions of a mixed

parity nonlinear oscillator. First, the amplitude in the negative direction is expressed in terms of the amplitude in the

positive direction. Then the two auxiliary equations, where the restoring force functions are odd, are solved by using a first

harmonic term (without a constant). Therefore, we obtain the two approximate solutions to the mixed parity nonlinear

oscillator. One is expressed in terms of the exact amplitude in the negative direction, the other in terms of the approximate

amplitude. These solutions are more accurate than the second approximate solution obtained by the Lindstedt–Poincaré

method for large amplitudes.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A differential equation modeling many of the important features of nonlinear oscillations is [1]

d2x

dt̄2
þ a1xþ a2x2 þ a3x3 ¼ 0, (1)

where ða1; a2; a3Þ are non-negative parameters. The method of harmonic balance is a useful technique [2,3] for
solving nonlinear oscillatory problems. It has been found to work well when all terms in the dependent
variable have odd parity [4]. Nayfeh and Mook [1, pp. 59–61] have cautioned against use of the method when
terms of mixed parity are involved, pointing out that for full consistency, a second harmonic term (as well as a
constant) must be taken into account in the solution expression. The main purpose of this communication is to
use the first-order harmonic balance method to determine analytical approximations to the periodic solutions
of mixed parity nonlinear oscillators by resorting to two auxiliary equations. This work represents a
companion to previous work on the quadratic nonlinear oscillator [5]:

€xþ xþ �x2 ¼ 0. (2)

For convenience, defining x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=a3

p
y and t̄ ¼ t=

ffiffiffiffiffi
a1
p

, Eq. (1) is reduced to the following equation:
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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€yþ yþ �y2 þ y3 ¼ 0, (3)

where � ¼ a2=
ffiffiffiffiffiffiffiffiffi
a1a3
p

and overdots denote differentiation with respect to time, t. Let the initial conditions be

yð0Þ ¼ A40; _yð0Þ ¼ 0. (4)

By the use of scaling [6, pp. 398–400] and the Lindstedt–Poincaré perturbation method, Mickens [2, pp. 68–71]
obtained the second approximation for Eqs. (3) and (4):

yM ¼ yM ðy;AÞ ¼ A cos yþ
�A2

6
ð�3þ 2 cos yþ cos 2yÞ

þ
A3

3
��2 þ

174�2 � 27

288

� �
cos yþ

�2

3
cos 2yþ

2�2 þ 3

32

� �
cos 3y

� �
, ð5Þ

where

y ¼ oMt; oM ¼ 1þ ð9� 10�2ÞA2=24; 0oA51. (6a, b, c)

(Eqs. (5) and (6) can be obtained by letting a ¼ � and b ¼ 1 in Eqs. (2.105) and (2.106) of Ref. [2].) The
corresponding approximate period of the oscillation is

TM ¼ 2p=oM ¼ 2p½1þ ð9� 10�2ÞA2=24��1. (7)

We will see that the first approximations obtained in this paper are more accurate than Mickens’s results for
large amplitudes.

2. The amplitude B in the negative direction

Eq. (3) can be rewritten as

_yd _yþ ðyþ �y2 þ y3Þdy ¼ 0. (8)

Integrating of this equation gives the first integral

_y2

2
þ

y2

2
þ
�y3

3
þ

y4

4
¼ h, (9)

where h is a constant of integration. The behavior of mixed parity nonlinear oscillators is different for positive
and negative directions. Assume that the system oscillates between asymmetric limits [�B, A] (B40). Noting
that when y ¼ A and y ¼ �B, the corresponding _y ¼ 0, we have from Eq. (9)

B2

2
�
�B3

3
þ

B4

4
¼

A2

2
þ
�A3

3
þ

A4

4
. (10)

Solving for B with MATLAB gives the following exact solution:

Be ¼
A

3
þ

4�

9
þ

C1=3

9
� 1�

8�2

27
þ

2�A

9
þ

A2

3

� �
6

C1=3
, (11)

where

C ¼ 270A2ð�þ AÞ þ 18Að27� 4�2Þ þ 4�ð16�2 � 81Þ þ 54½54ð1þ �A3 þ �A5Þ þ 3�2ð3A4 � 4Þ

þ 108A2ðA2 � �2Þ þ 9A2ð15þ 3A4Þ � 8�Að9þ �2A2Þ þ 16�3Að1þ �AÞ�1=2. ð12Þ

We now seek an approximate expression for B. Actually, the smaller � is, the more ‘‘cubic’’ Eq. (3) is. In this
case, B is close to A even though A is not small. Therefore, we have

B ¼ Aþ DB, (13)

where DB! 0 when �! 0. Let

hðB; �Þ ¼
B2

2
�
�B3

3
þ

B4

4
; hBðB; �Þ ¼

qh

qB
. (14a, b)
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Table 1

Comparison of the approximate amplitudes with the exact amplitude for � ¼ 1

A Be BM Ba

0.1 0.1071 0.1071 0.1073

0.2 0.2299 0.2302 0.2317

0.4 0.5229 0.5351 0.5404

0.5 0.6846 0.7222 0.7222

0.6 0.8464 0.9360 0.9158

0.8 1.1511 1.4542 1.3079

1.0 1.4257 2.1111 1.6667

2.0 2.5789 8.2222 2.8889

5.0 5.6488 77.2222 5.7937

10.0 10.6618 521.1111 10.7326

100.0 100.6666 4.5121� 105 100.6733
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Substituting Eq. (13) into Eq. (14a) results in

hðB; �Þ � hðA; �Þ þ hBðA; �ÞDB ¼
A2

2
�
�A3

3
þ

A4

4
þ ðA� �A2 þ A3ÞDB. (15)

From Eqs. (10) and (15), we obtain

DB ¼
2�A2

3ð1� �Aþ A2Þ
. (16)

Thus, the approximate expression for B is

Ba ¼ B ¼ Aþ DB ¼ Aþ
2�A2

3ð1� �Aþ A2Þ
. (17)

We also have an approximate expression from Eq. (5)

BM ¼ yMðp;AÞ
�� �� ¼ A 1þ

2�A

3
1þ

2�A

3

� �� �
. (18)

For comparison, the exact amplitude Be and the approximate amplitudes computed by Eqs. (17) and (18),
respectively, are listed for � ¼ 1 in Table 1. Table 1 shows that BM is somewhat more accurate than Ba if
Ap0:4, but when AX0:6 Ba is more accurate than BM .

3. Solutions of the two auxiliary equations

Based on the discussion in Ref. [5], we first consider the following auxiliary equation:

€yþ yþ �y2 sgnðyÞ þ y3 ¼ 0; yð0Þ ¼ A; _yð0Þ ¼ 0, (19)

where sgnðyÞ is the sign function, equal to +1 if y40, 0 if y ¼ 0 and �1 if yo0. Let oA be the angular
frequency of Eq. (19). Then substituting

y ¼ A cos oAt ¼ A cos y (20)

into Eq. (19) and taking into account that [5]

ðA cos yÞ2 sgnðA cos yÞ ¼ A cos yj jA cos y ¼
8A2

3p
cos yþ higher order harmonics, (21)

we obtain

�o2
A þ 1þ

8�A

3p
þ

3A2

4

� �
A cos yþ higher order harmonics ¼ 0. (22)
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Setting the coefficient of cos oAt equal to zero and solving for oA yields

oA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8�A

3p
þ

3A2

4

s
. (23)

Therefore, a first approximation to the periodic solution of Eq. (19) is

y ¼ A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

8�A

3p
þ

3A2

4

s
t. (24)

The corresponding approximate period of the oscillation is

TA ¼
2p
oA

¼ 2p 1þ
8�A

3p
þ

3A2

4

� ��1=2
. (25)

Now we consider the second auxiliary equation:

€yþ y� �y2 sgnðyÞ þ y3 ¼ 0; yð0Þ ¼ B; _yð0Þ ¼ 0. (26)

The first approximation to Eq. (26) is assumed to be

y ¼ B cos oBt ¼ B cos y, (27)

where oB is the angular frequency of Eq. (26). Substituting Eq. (27) into Eq. (26) and noting the relation given
in Eq. (21), we have

�o2
B þ 1�

8�B

3p
þ

3B2

4

� �
B cos yþ higher order harmonics ¼ 0. (28)

Appling the harmonic balance technique gives

oB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

8�B

3p
þ

3B2

4

s
. (29)

Then from Eq. (27) we obtain

y ¼ B cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

8�B

3p
þ

3B2

4

s
t. (30)

The corresponding approximate period of the oscillation to Eq. (26) is

TB ¼
2p
oB

¼ 2p 1�
8�B

3p
þ

3B2

4

� ��1=2
. (31)

4. Results and discussion

The first approximate period T1 and the corresponding periodic solution y1ðtÞ to Eqs. (3) and (4) are,
respectively,

T1 ¼
TA þ TB

2
¼ p 1þ

8�A

3p
þ

3A2

4

� ��1=2
þ 1�

8�B

3p
þ

3B2

4

� ��1=2" #
, (32)

y1ðtÞ ¼ A cos oAt; 0ptp
TA

4
, (33a)

y1ðtÞ ¼ B cos oB t�
TA

4
þ

TB

4

� �
;

TA

4
ptp

TA

4
þ

TB

2
, (33b)
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Table 2

Comparison of approximate periods with the corresponding exact period to Eqs. (3) and (4) for � ¼ 1

A Te TM (%error) T1Be (%error) T1Ba (%error)

0.1 6.28559 6.28580 (0.0035) 6.28526 (�0.0052) 6.28554 (�0.00007)

0.2 6.28794 6.29367 (0.0911) 6.28673 (�0.0193) 6.28865 (0.0113)

0.4 6.20413 6.32535 (1.9539) 6.20119 (�0.0475) 6.20331 (�0.0132)

0.5 6.05759 6.34932 (4.8159) 6.05370 (�0.0642) 6.03580 (�0.3597)

0.6 5.83368 6.37887 (9.3455) 5.82692 (�0.1160) 5.75941 (�1.2732)

0.8 5.27286 6.45533 (22.4256) 5.25371 (�0.3631) 5.03897 (�4.4357)

1.0 4.72140 6.55637 (38.8649) 4.68905 (�0.6853) 4.38081 (�7.2137)

2.0 2.97577 7.53982 (153.3738) 2.92793 (�1.6076) 2.74902 (�7.6201)

5.0 1.36965 �150.79645 (—) 1.34144 (�2.0595) 1.32275 (�3.4245)

10.0 0.71463 �1.98416 (—) 0.69932 (�2.1420) 0.69686 (�2.4868)

100.0 0.073913 �0.015116 (—) 0.072308 (�2.1720) 0.072305 (�2.1752)
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y1ðtÞ ¼ A cos oA tþ
TA

2
�

TB

2

� �
;

TA

4
þ

TB

2
ptpT1. (33c)

If B ¼ Be (Ba) in Eqs. (32) and (33), then we will use T1Be (T1Ba) and y1Be (y1Ba) to denote T1 and y1,
respectively.

The exact period Te to Eqs. (3) and (4) is

Te ¼

Z A

0

2 dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2 þ 2

3�ðA
3 � x3Þ þ 1

2ðA
4 � x4Þ

q þ

Z B

0

2 dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � x2 � 2

3
�ðB3 � x3Þ þ 1

2
ðB4 � x4Þ

q , (34)

where B is given, in terms of A, in Eq. (11).
For comparison, the exact period Te obtained by integrating Eq. (34) and the approximate periods TM (Eq.

(7)), T1Be (B ¼ Be in Eq. (32)) and T1Ba (B ¼ Ba in Eq. (32)) are listed in Table 2 for � ¼ 1. The percentage
errors are defined as 100½TMðT1Be;T1BaÞ � Te�=Te. Table 2 indicates that there is not much difference between
the exact period and the approximate periods if Ap0:2. But T1Be and T1Ba are more accurate than TM when
AX0:4. TM is not valid for large amplitudes.

Comparisons between the numerical solution yNum of Eqs. (3) and (4) with the approximate solutions yM

(Eq. (5)), y1Be and y1Ba are shown in Figs. 1 and 2 for the time in one exact period (� ¼ 1). Fig. 1 shows that
y1Be and y1Ba are more accurate than yM . When AX1yM is not valid. Therefore, yM does not appear in Fig. 2.
5. Conclusions

A mixed parity nonlinear oscillator modeled by Eqs. (3) and (4) has been attacked by the first-order
harmonic balance method. First, the amplitude B in the negative direction is expressed in terms of the
amplitude A. Then the method is applied to the two auxiliary equations (19) and (26), where the restoring
force functions are odd. The first approximate periods T1Be and T1Ba are more accurate than the second
approximate period TM obtained by the Lindstedt–Poincaré method when AX0:2, and the approximate
solutions y1Be and y1Ba are more accurate than the second approximate solution yM for large amplitudes.
Furthermore, if we only use the approximate amplitude Ba, the first-order harmonic balance is much simpler
than the second-order perturbation. In fact, if we obtain the approximate solutions to Eq. (19), then we do not
need to actually solve Eq. (26). Letting � ¼ �� and A ¼ B in Eqs. (23), (24) and (25) gives Eqs. (29), (30) and
(31) immediately. Obviously, the approach in this paper can be applied to other types of mixed parity
nonlinear oscillators.

Although our result complements the analysis of Mickens [2, pp. 68–71] for small amplitudes, there is
clearly room for improvement of the accuracy of the approximate solutions y1Be and y1Ba, especially when
AX1. It is very difficult to use the method of harmonic balance to construct higher-order analytical
approximations because it requires analytical solutions of sets of complicated nonlinear algebraic equations.
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Fig. 1. Comparison of the approximate solutions yM (dash-dot curve), y1Be (dotted curve) and y1Ba (dashed curve) with the numerical

solution yNum (solid curve) for � ¼ 1: (a) A ¼ 0:2; (b) A ¼ 0:4; (c) A ¼ 1:0.
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Thus, in this paper we restrict our investigation by the first harmonic only. We will apply a modified iteration
procedure [7] to Eqs. (3) and (4) for second-order approximations in another paper.

The mixed parity nonlinear differential equation (1) occurs quite widely in a variety of engineering
applications such as the nonlinear free vibrations of laminated plates [2,8–10]. If a2o0 and a3o0, then we may
let a2 ¼ �b2 and a3 ¼ �b3. Thus, defining x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b3

p
y and t̄ ¼ t=

ffiffiffiffiffi
a1
p

, Eq. (1) is reduced to

€yþ y� �y2 � y3 ¼ 0, (35)

where � ¼ b2=
ffiffiffiffiffiffiffiffiffi
a1b3

p
. Obviously, the present method can also be used to deal with this equation.

The main difference between this paper and Ref. [5] is that here we present a method for approximate
expressions for B. When the restoring force function is a combination of quadratic, cubic and quintic terms,
there is no exact expression for B. But we can still use the method in this paper to obtain approximate
solutions for B.

Because the behavior of quadratic or mixed parity oscillators is different for positive and negative
directions, quadratic and mixed parity oscillators are more complicated than cubic oscillators. One limitation
of the results developed in this paper is the requirement that the initial conditions should be yð0Þ ¼ A40 and
_yð0Þ ¼ 0. It needs further research to solve Eq. (3) with arbitrary initial conditions by using the present
method.
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Fig. 2. Comparison of the approximate solutions y1Be (dotted curve) and y1Ba (dashed curve) with the numerical solution yNum (solid

curve) for � ¼ 1: (a) A ¼ 5:0; (b) A ¼ 10:0; (c) A ¼ 100:0.
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In this paper, the approximate solution to Eqs. (3) and (4) is obtained with the aid of the two auxiliary
equations (19) and (26). In general, consider the nonlinear oscillator modeled by

€yþ f oddðyÞ þ f evenðyÞ ¼ 0; yð0Þ ¼ A40; _yð0Þ ¼ 0, (36)

where

f oddð�yÞ ¼ �f oddðyÞ; f evenð�yÞ ¼ f evenðyÞ. (37a, b)

When yX0, Eq. (36) is equivalent to

€yþ f oddðyÞ þ sgnðyÞf evenðyÞ ¼ 0; yð0Þ ¼ A40; _yð0Þ ¼ 0, (38)

in which the restoring force function f ðyÞ ¼ f oddðyÞ þ sgnðyÞf evenðyÞ is odd. If yo0, then substituting y ¼ �ȳ

(ȳ40) into Eq. (36) gives

€̄yþ f oddðȳÞ � f evenðȳÞ ¼ 0; ȳð0Þ ¼ B40; _̄yð0Þ ¼ 0. (39)

For ȳ40, Eq. (39) is also equivalent to

€̄yþ f oddðȳÞ � sgnðȳÞf evenðȳÞ ¼ 0; ȳð0Þ ¼ B40; _̄yð0Þ ¼ 0, (40)
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where the restoring force function f ðȳÞ ¼ f oddðȳÞ � sgnðȳÞf evenðȳÞ is also odd. Like Eq. (10), the relation
between A and B is described by the following equation:Z A

0

f oddðyÞdyþ

Z A

0

f evenðyÞdy ¼

Z �B

0

f oddðyÞdyþ

Z �B

0

f evenðyÞdy ¼

Z B

0

f oddðyÞdy�

Z B

0

f evenðyÞdy: (41)

Obviously, the two auxiliary equations of Eq. (36) are Eqs. (38) and (40).
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